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ABSTRACT 

On estimating the eigenvalues for a class of semilinear elliptic operators, we 
obtain bifurcation and comparison results concerning the eigenvalues of some 
related linear problem. 

I. Introduction 

Let ~2 be a bounded open subset of  R ~ (N > 3) with smooth boundary 0f2. 
Consider the semilinear eigenvalue problem 

(l) 
L u  + f l x ,  u ) = l t u  inf2, 

u = 0 on 0fL 

where L u  = - ZU,,j = 1 Di(a,,j  ( x ) D j  u )  + ao(x)u  is a formally selfadjoint operator 
with bounded measurable coefficients such that a,,j = a j , , ( i , j  = 1 . . . . .  N )  and 

f :  ~ X R ~ R is a Carath6odory function (i.e. measurable in x for all u E R and 

continuous in u for a.a. x ~ f ~ )  such that f ( x ,  0 ) =  0, so that u = 0 solves 
trivially (1) for each/t. 

If f is odd in u and satisfies suitable growth restrictions, then by Liusternik- 

Schnirelmann (LS) theory one can establish, given any r > 0, the existence of  

infinitely many eigenvalues/~,(r) (n = 1, 2, . . . )  for (1) associated with eigen- 
functions u . ( r )  satisfying Sn u2(r )  = r2. 
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A natural problem in this context is to compare the eigenvalues/t , (r)  with 

those of  some linear problem close, in a sense, to (1). 

Very recently, in his investigation on the limit points of  the/t , (r) ,  Shibata [5] 

has shown in particular that Jiffis C' in u, ifO, f (x ,  u) satisfies a "coercivity" 
condition for u > 0, and if  moreover 

(2) IO . f (x ,u ) -a . f ( x ,  O)l ~ c l u l  '~-~ 

for some c > 0 and some p : 1 < p < 1 + 2/N, then # , ( r ) ~ 2 ,  as r ~ 0 ,  where 

2, is the n th eigenvalue of  the linear problem 

(3) 
Lu + Ouf(X, O)u = ltu in fL 

u = (3, on OfL 

More precisely, he shows (see (ii) on p. 423 of  [5]) that, as r ~ 0, 

(4) /~(r) =2. + O(rp-l). 

It is our aim to generalize thi:5 result on simplifying substantially the assump- 

tions on f ,  in particular as far as regularity and growth restriction are 

concerned. We show indeed that, under  the sole assumption 

(5) [f(x,  u)--  q(x)u I <= c[u I p 

for some q EL°~(~) and some p : 1 < p < 1 + 4/N, a result like (4) holds with 

2, the eigenvalues of  the linear operator Lu + q(x)u in f~ subject to zero 

Dirichlet b.c. on 0~.  Obviously, when f i s  differentiable, then (2) implies (5) 

with q(x )=  f~(x, 0). Let us remark here that condit ion (2), which in [5] is 

assumed to hold only for u > 0, must  then necessarily hold for any u because 

O,f(x, u) is even in u, due to the oddness assumption o n f .  

In our approach, the above estimate is an immediate  consequence of  a 

bifurcation result (Theorem 2 below) concerning (1), which states that i f  

If(x,  u)l < a l u  I p for some p:  1 < p < 1 + 4/N, then for each n #,(r)  = 

~ + O(r p- 1) and u,(r) ~ 0 in I, PJ'2(~2) as r ---- 0; here/z~ denote the eigenvalues 

of  Lu = 2u in f L u  --- 0 on af~, while WI,2(f~) denotes the closure of  Cf(f~) in 
the usual Sobolev space WI,2(O). 

When comparing with [5], we see that the bifiarcation aspect is not con- 

sidered there; moreover, we rely on a more appropriate use of  a basic 

inequality concerning bounds for the L p norm of  uEI 'V  ~,2 

(1 < p < p :=  2N/(N - 2)) in terms of  the L 2 norm of  u and Vu; this sim- 
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plifies considerably the estimates and, hopefully, makes the argument more 

transparent. 
This paper complements the results given by the author in [2], where a wider 

range ofp was allowed but at the expenses of an additional sign assumption on 

f.  However, in [2] the emphasis was on the asymptotic distribution of the Ft,(r) 

as n ~ ~ (r > 0 fixed): it may be of interest to note incidentally that the range 

of p considered here (1 < p < 1 + 4 / N )  is the same under which the "non- 

linear" eigenvalues Ftn(r) obey the classical asymptotic law 

# , ( r )  = kn  2IN + r e m a i n d e r  (n ~ ~ )  

known for the eigenvalues of the linear operator L; see [2]. 

2. Preliminaries 

We shall use repeatedly the following result, which is a direct consequence 

(via Holder's inequality) of  the Sobolev embedding thoerem (see e.g. [2]): 

LEMMA l. Le t  p : 1 < p <= Po :=  (N + 2)/(N - 2) (so that  2 <= p + 1 <= p )  

a n d  let fl = fl( p )  = ( N / p ) (  p - ( p + 1)). Then ,  f o r  each y: 0 < ~, < fl, there 

ex is ts  c > 0 such that 

p + l  < (6) II u p+~ = c  II Vu 11~+'-~11 u 11~ 

f o r  all u E I/V~,2(~). (Here  a n d  henceforth  II u lip denotes  the n o r m  o f  u in 

LP(~) . )  

We remark on passing that (6) can also be derived from the following 
interpolation inequality, quoted and used in [5]: 

II u II 1/,u ~-< C II U II 1'~ II U II L (U ~ rPl'2(f~)) 

whenever 1/ p < 2 < lz < v, with a = (v - I~ )/(v - 2), fl = (/~ - 2 )/(v - 2). 
Let us now go back to problem (1). To prove the existence of the eigenvalues 

for (1) we make use of the LS critical point theory: standard references for this 

are e.g. [3] or [4]. 

The following assumptions will be made throughout: 

(A1) L is uniformly elliptic in f~: there exists v > 0 such that, for all x Ef~ 
and for all { E R N, 

N N 

Y, a i j ( x )~ i~ j  > v Y~ ~2. 
i , j = l  i = l  
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(A2) f :  f2 × R - - ' R  is odd in u ( f i x ,  - u) = - f ( x ,  u)) and satisfies 

I f ( x , u ) l < = a l u l P + b  

for some a,  b > 0 and some 1 _-'~ p < 1 + 4/N. 

We shall henceforth consider weak solutions of  (1), namely u E I~1,2(~) 

such that 

(7) ~ f a,,j(x)D~uDjv+ f ao(x,uv+ 5 fix, u,v=~ : uv 
i , j =  1 

for all v~  I, pL2(f2): S stands for ,In. Let us further set 

1 
1 f a,.,(x)D, uDju+  :ao(x)u 2 

 0(u) = 2 , .  =x 
(8)  

and 

(9) 
F 

~(u) = ~o(u) + J F(x, u) 

where F(x, u) = S~f(x, s)ds. For r > 0 let moreover 

Mr:={u~l/fZl'Z(~"~)'fua=r2} 

and for each n = 1, 2 , . . .  set 

K,(r) = {K C Mr: K compact, symmetric,  y(K) = n } 

where y(K) denotes the genus o5 K. Finally, introduce the "LS critical levels" 

(10) C,(r) = inf  sup 20(u). 
Kn(r) K 

With these notations, we can now state the basic existence result: 

TrtEOREM 1. Assume (A1), (A2). Then given r > 0, there exists a sequence 
Un(r) (n = 1, 2 , . . . )  of (weak) eigenfunctions of (1) belonging to M, and 
such that 

(11) 20(u.(r)) = On(r) 

where C.(r) is as in (10); the eigenvalue I~.(r) corresponding to u.(r) satisfies 

r2/t.(r) = 2¢o(U.(r)) + f f(x, u.(r))u.(r). (12) 
d 
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PROOF. We first show that ~ is bounded below on Mr (for each r). To this 

purpose, note that by (A1) 

2q~(u) > v /  ,Vul2-d ~u2-2 f IF(x,u)I 

where d = [[ a0 IlLegal. Moreover, (A2) and Schwarz' inequality imply that 

f y IF(x,u)] <=a ]ulP+~ +b u z 

for some new constants a, b > 0. Next, we use the inequality (6) with 7 = fl: on 

setting 2a = p + 1 - fl = ( p - 1)N/2, this becomes 

f l u  II lip II u IIg f ,+l  < c  Vu 

and we conclude that, on Mr, 

20(u) >_-v II Vu 1122- acrP II Vu l i P - d r 2 - b r .  

The assumption p < 1 + 4/N is equivalent to a < 1; the claim now follows 

from the above inequality. 

The rest of the proof (which consists in verifying the "Palais-Smale con- 

dition" and applying the LS theory on the manifold Mr) now runs along the 

lines already shown in [1] and will be omitted. We only remark that by 
Holder's inequality, for all 1 _-< p _-< P0 and all u, vE Vvrl'2(~'~), 

f [ u l P v < ( f  lu I.+')"/~"+')(f IulP+l) pI("+I) 

= II u Ig+, II v i i ,+ , .  

Recalling the growth assumption in (A2), this permits one to introduce, as in 
[ 1 ], an operator BI by the rule 

(B,(u), v) = f f(x, u)v (u, 1¢'1,2(~)) V~ 

which turns out to be compact (for p < P0) by virtue of  the compact imbedd- 

ing of Wl,Z(fl) into LP(f~) ( l < p < p ) .  Therefore, the restriction 

p < 1 + N/(N - 2) in Lemma 2.2 of  [5] is superfluous. We remark on passing 

that also the condition a0 > 0 on the zeroth order coefficient in L has been 

removed. 

REMARK 1. To obtain (12), just put u = v =  u,(r) in (7) and use the 
normalization condition j u~(r) = r 2. 
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REMARK 2. I f f ~ 0 ,  the LS procedure gives exactly the eigenvalues p~ of  
Lu = #u in f~, u = 0 on 0~:  we have in this case 

(13) r2/~ = inf sup 2O0(u) 
K.(r) K 

which is nothing but  a reformulation of  the classical Courant 's  minimax 

principle in terms o f  the sets K~(r): see e.g. [1 ]. 

3. Results 

THEOREM 2. Let the assumptions of  Theorem 1 be satisfied with p > 1 and 
b = 0 in the growth assumption (A2). Then each #: is a bifurcation point 
(in lJc-1,E(f~)) for (1); more precisely, for each n = 1, 2 , . . .  the eigenvalue-eigen- 
function pairs (l~n(r), un(r)) given by Theorem 1 satisfy #n(r)=/to + O(rP_l) 
and [1Vu,(r)IIz-- '0 as r--'O. 

PROOF. We shall use the inequality 

p + l  
(14) II u p+, < c II '~u 1122 II u II~-' (u ~ lJc',E(f~)) 

which is the special case of  (6) when ~ = p - 1; this choice is possible since 

p - 1 < f l i f f p  < 1  +4/N.  
Fix n = 1, 2 , . . .  and let us first prove that, for small r > 0, 

(15) Ip~(r) - # ; 1  < cr p-~ 

(here and henceforth c, d will denote some, but  not always the same, positive 
constants, possibly depending on n). To this purpose, note that 

(16) , O ( u ) - O o ( u ) l = [ f F ( x , u ) [ < c f l u [  ,+ ' .  

Next  we use (14) and recall that, by ellipticity, 

so that 

2~o(U) >_ v II V u  1122 - d I] u 1122 

f lul~+~ ~ c(~)o(u)+d II u 1122)II u II; - '  

whence, for all u E Mr, 

(17) f l u  I p+~ <= crP-~o(U) + dr p÷~, 

Therefore from (16), 
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(18) - d r  p+I + ( 1  -crP-~)Oo(U)<O(u)<-(1 +crP-l)Oo(u)+dr p+l. 

Let r > 0 be so small that 1 - cr p- 1 > 0; on taking infx.(r)sup~ of  each term in 
(18) and using (10) and (13) we then get 

- dr "+l + (1 - crP-l)r2lt°. <= C.(r) <= (1 + crP-l)r2ll° ~ + dr p+I, 
i ° e °  

(19) I C~(r) - rZlz°~l <= cr p+'. 

On the other hand, using (11) and (12) we have 

] C.(r)  - r2/l.(r) [ = 2 f F(x, u.(r)) - ff(x, Un(f ))Un(F) 

(20) < c f  u . ( r ) f  +l. 

The first inequality in (18) now gives, for r sufficiently small, 

Oo(U)<C'O(u)+d'r p+I (u~Mr)  

with c', d '  new constants. Therefore, from (17), 

f lu {.+l _<_cr p-l~O(u ) + dr.+l 

(note that r 2p = O ( r  p + 1) since p > 1). Writing this for u = u. (r) and using (20) 

we get 
] C.(r)  - r2/l(r) [ _-< crP-'C.(r) + dr p+'. 

2 o However,  from (19), C.(r) < r lt. + dr p+I and so 

(21) [ C.(r)  - r2#.(r)[ < cr p+I. 

(15) now follows on using (19) and (21). 

Let us conclude the proof  of  Theorem 2. We now know that, since S uZ.(r) = 
r z ~ 0 and/ l . ( r )  ~ / l~  as r ~ 0, there is L 2 bifurcation from each p~. Moreover,  
from (12) we get 

<= rZlt.(r) + f [u.(r)[ p+l 2q~0(u.(r)) 
J 

and hence 

i.e., 

v f [Vu.(r)[2-dr2<=r2#.(r)+cr '- l  f [Vu.(r)]  2, 
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cr p-I) f I Vun(r)l 2 < r2/Zn(r) + dr 2. (v 1 

l 

This implies ~1Vun(r)12 --" 0 as r ~ 0, whence the result. 

COROLLARY. Assume there exists q ~L~(t2)  such that 

If(x, u ) - q ( x ) u l  <-_ c l u l  p 

for some c > 0 and some p : 1 <z p < 1 + 4/N. Let 2~ (n = 1, 2 . . . .  ) denote the 
eigenvalues of  

I Lu + q(x)u = 2u in t2, 
(22) [u = 0 on 0t2. 

Then / z , ( r )+2~  as r ~ O  for ,each n; more precisely, /z~(r) = a ,  + O(r p-~) 
asr-- 'O.  

PROOF. Let/S = L + q and write (1) as £u + g(x, u) = 2u in ~ ,  u = 0 on 

at),  where g(x, u) :=  f (x ,  u) -- q(x)u. Then /S satisfies (A1) and g satisfies 
(A2); the conclusion now follows from the previous result applied to £ and g. 
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